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Abstract.

In modern large-scale supercomputing applications, Algebraic MultiGrid (AMG) is a leading
choice for solving matrix equations. However, the high cost of communication relative to that of
computation is a concern for the scalability of traditional implementations of AMG on emerging
architectures. This paper introduces two new algebraic multilevel algorithms, Algebraic MultiGrid
Domain Decomposition (AMG-DD) and Algebraic MultiGrid Range Decomposition (AMG-RD),
that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach.
While the methods introduced here are similar in spirit to the geometric methods developed by
Brandt and Diskin [1], Mitchell [2], and Bank and Holst [3], they differ primarily in that they are
purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global
composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention,
“grids” here should only be taken in the algebraic sense, regardless of whether or not it corresponds
to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their
novel residual communication process that enables effective parallel computation on composite grids,
avoiding the all-to-all communication costs of the geometric methods. The main purpose of this
paper is to study the potential of these two algebraic methods as possible alternatives to existing
AMG approaches for future parallel machines. To this end, this paper develops some theoretical
properties of these methods and reports on serial numerical tests of their convergence properties over
a spectrum of problem parameters.
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1. Introduction. Multigrid methods are often well-suited for large-scale scien-
tific computing problems because they offer the possibility of an O(N) method for
solving equations of the form A0u0 = f0, where A0 is an N ×N matrix. However, the
challenge for multigrid and other matrix equation solvers on large parallel machines
is that performance can suffer from the high cost of communication relative to that of
computation. While Algebraic MultiGrid (AMG [4, 5]) solvers scale nearly optimally,
they too are increasingly affected by relative communication costs as the number
of processors increase. Indeed, all known parallel multigrid algorithms experience
O(log(N)) communication costs for the main computation in each V-Cycle. Previous
geometric multilevel approaches developed by [1, 2, 6, 3, 7, 8, 9, 10, 11] aimed to re-
duce the constant in this O(log(N)) cost by trading communication for computation
using redundant processing on overlapping grids. Inspired by these efforts, the Alge-
braic MultiGrid Domain (AMG-DD) and Range Decomposition (AMG-RD) methods
introduced here attempt to achieve the same goal by tasking possibly otherwise idle
processors to perform redundant computations via a domain decomposition approach;
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the basic idea is to use subdomains that fully overlap at coarse scales. Our departure
from the previous geometric approaches is to exploit the benefits of domain decomposi-
tion in a purely algebraic AMG setting. AMG-DD and AMG-RD first assume that the
setup for an effective AMG implementation has been formed [4, 5]. The two methods
then use the global AMG hierarchical constructs (coarse grids, coarse-grid operators,
and intergrid transfer operators) to create a composite grid for each processor. (Our
use of geometric terms such as “grid” and “domain” should be taken in an algebraic
sense, as is common in the AMG literature. While these objects may in many cases
have an underlying geometry, we make no such assumptions here. No aspects of the
methods that we discuss use any notion of, or depend upon, an underlying geometry–
the constructs are all purely algebraic. Nevertheless, we use the geometric convention
here because it makes for a clearer discussion.) Each composite grid consists of the
original grid in and about the subdomain owned by its associated processor and of
grids that are increasingly coarse as they extend away from the processor subdomain
to the boundary. These composite grids are formed algebraically and directly from the
hierarchical constructs determined in the traditional AMG setup phase. In this way,
AMG-DD and AMG-RD can be thought of as globally overlapping domain decompo-
sition methods that have reduced communication per cycle, since they do not require
communication on each grid level as standard AMG methods do. Moreover, the new
process introduced here provides an efficient communication phase between each cy-
cle, in contrast to the expensive all-to-all communication processes of the previous
geometric approaches. The composite grids thus provide a means for maintaining
effective communication between processors that controls cost and maintains optimal
convergence rates.

The main focus of this paper is to study the potential of these AMG-DD and
AMG-RD as possible alternatives to existing AMG approaches for solving large-scale
matrix equations on advanced parallel machines. To this end, this paper develops
some theoretical properties of these methods and reports on serial numerical tests of
their convergence properties over a spectrum of parameters on a model problem. Also
included are some heuristics and a parameter study based on a performance model,
both of which are designed to anticipate the potential of AMG-DD and AMG-RD for
use on emerging parallel architectures.

Since AMG-DD and AMG-RD are constructed on top of an existing AMG hi-
erarchy, the cost of the setup, as in all AMG algorithms, needs to be addressed. In
a purely serial setting, setup costs for AMG-DD and AMG-RD can be up to about
twice that of standard AMG due to the redundant calculation that we use. How-
ever, in parallel, owing to the construction of the algorithm from existing operators,
the increased setup cost can be reduced essentially to the cost of communicating the
components of the operators needed to each processor. This communication can be
done using the same pattern as the residual communication and, as such, is bounded
in cost by that of performing one extra V-Cycle.

We begin by outlining a traditional AMG implementation and setup, and then
specifying how AMG-DD and AMG-RD are constructed. While a wide range of
parameters can be used to create the solvers, in the interest of space, we explore just
a few choices and how they affect convergence and scalability of the algorithms. We
show here that AMG-DD and AMG-RD are algebraic duals of each other in the energy
inner product, and we establish convergence of these methods in a two-level setting.
(This paper focuses mainly on AMG-DD, but AMG-RD is included because it may
be more convenient for some applications and because the two methods together can
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be used in sequence to provide a self-adjoint scheme.)
To provide a framework for building models and estimates for scalability, the re-

sults in this paper are restricted to determining the effects of the algorithms on the
model 2D Poisson equation. We present several numerical results from which we can
form models of how parallel AMG and AMG-DD are expected to scale. These results
suggest that, for current parallel architectures, the trading of communication for com-
putation that AMG-DD achieves puts it essentially at break even with AMG in terms
of parallel efficiency. This parity comes perhaps more from the remarkable parallel
efficiency of advanced AMG solvers [12] than any lack of efficiency of the methods de-
veloped here. Nevertheless, in addition to their fault tolerance advantages that result
from the redundancy of the overlap, AMG-DD (and AMG-RD) can be expected to
outperform AMG if communication becomes more costly relative to computation in
future hardware.

2. AMG. This section gives a very brief overview of the methodology to set the
scene for the introduction of our new algorithms. AMG consists of two phases: setup
and solution. The setup phase is a one-time cost that is based on the matrix A0, and
could be used for multiple right-hand sides. Letting Ω0 = {i} be the set of indices on
the fine grid, then A0, u0, f0 are represented on Ω0 and the setup phase consists of
forming a set of coarser grids, Ω1, . . . ,ΩL, with associated operators, A1, . . . , AL. The
setup also defines the operators P0, . . . , PL−1 such that Pi : Gi+1 → Gi, where Gi is
the function space associated with Ωi. The standard Galerkin condition can then be
used to form the coarse-grid operators: Ai+1 = PTi AiPi, where superscript T denotes
matrix transpose. The details of how to form these operators are covered in [4, 5].
The solve phase then consists of cycles, and utilizes the complementary processes of
relaxation and coarse-grid correction to iterate and improve the solution.

Algorithm 2.1 u = VCycle(ν1, ν2, ui, fi) for solving Aiui = fi , where L is the
coarsest grid

if i == L then
Solve ALuL = fL.

else
Relax ν1 times on Aiui = fi.
Set fi+1 = PTi (fi −Aiui).
Call ui+1 ← VCycle(ν1, ν2, 0, fi+1).
Update ui ← ui + Piui+1.
Relax ν2 times on Aiui = fi.

end if
return ui

3. AMG-DD/AMG-RD.

3.1. Overview of Algorithms. The goal of AMG-DD/AMG-RD is to replace
the V-cycles used in standard AMG with domain decomposition cycles that require
less communication. The assumption is that the setup phase of the AMG process
has been completed, forming Ai, Pi,Ωi. Thus, a traditional AMG setup process has
already formed a partitioning of the original fine grid, Ω0, across all the processors,
p = 1, 2, . . . , Np.

Let Dp0 denote the indices of Ω0 assigned to processor p. (When it is clear which
processor we are referring to, we drop the superscript and write just D0, and similarly
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for other notation.) After the AMG setup is complete, each processor owns the
region of the fine grid it is assigned, as well as any of the points in that region that
are repeated on any of the coarser grids (D0 ∩ Ωk, k = 1, . . . , L).

To understand the AMG-DD algorithm, we first consider the ideal setting in which
each processor separately solves the original problem, A0u0 = f0, on the original fine
grid, Ω0. Each processor is assigned its region, D0. Now letting each processor solve
the original problem A0up = f0, the final solution u would be given exactly by

u =
∑
p

Qpup. (3.1)

Here, {Qp}
Np

p=1 is the partition of unity defined by letting Qp be the identity on D0 and
0 otherwise. (This is the definition used throughout the paper.) It is generally absurd,
however, for each processor to solve the original global equations, so each instead solves
a much smaller problem, Apcu

p
c = fpc , that is fine only near the processor’s domain

and increasingly coarse as it extends away to the boundary. More precisely, processor
p iterates on residual equations by applying V-Cycles to

Apcu
p
c = rpc ≡ (P pc )T (f0 −A0u0) , (3.2)

where P pc is an interpolation operator from composite-grid to fine-grid functions. The
global approximation is then corrected according to

u
(n+1)
0 = u

(n)
0 +

∑
p

QpP
p
c u

p
c . (3.3)

Notice that, in the ideal case, the composite grid is just the fine grid, so one iteration
of AMG-DD is equivalent to traditional V-Cycles if the composite problems are solved
by V-Cycles. The questions that remain are how the inaccuracies introduced by the
composite grids are accumulated in forming the approximate solution of the original
problem, and how much useful work can be done on each processor before a new
residual must be calculated.

The dual of this process is AMG-RD, which decomposes the right-hand side (as
opposed to the solution), and then reconstructs the approximation as the sum of the
global processor components as opposed to local processor pieces. So, in AMG-RD,
each processor solves a problem of the form

Apcu
p
c = (P pc )TQp (f0 −A0u0)

and the approximate solution, u, is then formed according to

u
(n+1)
0 = u

(n)
0 +

∑
p

P pc u
p
c .

Notice that if each processor is assigned the entire fine-grid problem, then, under the
same assumptions as in the ideal AMG-DD setting, this could also correspond exactly
to standard V-Cycles. However, we once again need to verify how well the composite
problems combine to represent the original problem.

3.2. Composite-Grid Creation. A traditional V-Cycle requires each proces-
sor to obtain a solution for its own region, Dp0 . This is accomplished by communicating
on each grid of the V-Cycle with neighboring processors. The AMG-DD algorithm
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Fig. 3.1: Two-dimensional example of sets used to construct the composite grid for
η = 1. Left: Dpk (black circles), Dpk,η (all circles). Right: Dpk+1 (black squares), Dpk+1,η

(all squares). The left sets are shown again on the right for reference.

instead uses global composite grids to approximate the solution on Dp0 . A composite
grid is best understood by examining how it is created.

Define distance, dist(x, y), between two points x, y ∈ Ωk in the usual way as the
length of the shortest path connecting x and y in the graph of Ak. Similarly, define
dist(x,W ) to be the minimal distance between point x and the set of points W . The
finest level of the composite grid, Ωpc , associated with processor p consists of the points
that belong to Dp0 and all points that are within distance η0 from Dp0 :

Dp0,η = {x ∈ Ω0 | dist(x,Dp0) ≤ η0} .

Now, let Dp1 denote the points in Dp0,η that are repeated on the first coarse grid, Ω1.
Adding all the points within distance η1 on grid Ω1, we obtain the set

Dp1,η = {x ∈ Ω1 | dist(x,Dp1) ≤ η1} .

Proceeding recursively in this fashion for all grids, Ω0,Ω1, . . . ,ΩL, we obtain the final
composite grid

Ωpc =

L⋃
i=0

Dpi,η.

Figure 3.1 provides an illustration of the sets Dpk and Dpk,η in a simple 2D setting.
Notice that, for any point in the composite grid, it is possible to trace a path from
that point through the graph of the matrix to a point in Dp0 . This is illustrated (in
reverse order) by the path from x0 ∈ Dp0 to xk,η ∈ Dpk,η ⊆ Ωpc that arises naturally
from the construction of the composite grid:

x0 → x0,η ↓ x1 → x1,η ↓ x2 → x2,η ↓ x3 → . . . ↓ xk → xk,η. (3.4)

Here, a right arrow signifies a path through the graph on the current grid, and a down
arrow signifies a transition to a repeated point on a coarser grid.

Notice that this creation process constructs a composite grid, Ωpc , consisting of
the original region of the fine grid assigned to it and a mesh outside of this region
that becomes increasingly coarse further away from the region, until it reaches the
boundaries on some coarsest grid, i ≤ L. Notice also that we can select ηL to ensure
that the composite grid reaches all boundaries on the coarsest grid, which is what we
have done in all of the tests we report on below.
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3.3. Composite-Grid Operators. Recall that we are forming the coarse grids
from the original grid hierarchy that AMG created for us, so a natural fit is to use parts
of the already created operators. In the previous section, we defined a composite grid,
Ωc, and now we would like to form an operator from the associated function space,
Gc, to the fine-grid function space, G0, on the global fine grid.

For ease of discussion, first assume that there are only two grids, Ω0 and Ω1, in the
original hierarchy, and assume we reorder the grids together with the corresponding
composite grid Ωpc1 as follows:

Ω0 = {Dp0,η , Ω0 −Dp0,η},
Ω1 = {Dp0,η ∩ Ω1, Ω1 −Dp1 },

Ωpc1 = {Dp0,η , Ω1 −Dp1 }.

Notice that the individual sets that make up Ω1 are coarsened versions of the sets
in Ω0, and the composite grid is a combination of sets from both. Rewriting the
prolongation operator, P0, based on this reordering gives

P0 =

[
∗ ∗
P10 P11

]
.

From this, we define the composite prolongation operator, Pc1, that interpolates from
grid Ωpc1 to Ω0 by

P pc1 =

[
I 0

P̂10 P11

]
,

where P̂10 has had zero columns added to match the size of the identity block above
it. Suppose now that there are three grids in the hierarchy, Ω0,Ω1, and Ω2, and that
we reorder the grids Ω1 and Ω2, together with the corresponding composite grid, Ωpc2,
as follows:

Ω1 = {Dp0,η ∩ Ω1, (Dp1,η −D
p
1) , Ω1 −Dp1,η},

Ω2 = {Dp0,η ∩ Ω2, (Dp1,η −D
p
1) ∩ Ω2, Ω2 −Dp2 },

Ωpc2 = {Dp0,η , (Dp1,η −D
p
1) , Ω2 −Dp2 }.

Rewriting the prolongation operator, P1, based on this reordering gives

P1 =

∗ ∗ ∗
∗ ∗ ∗
∗ P21 P22

 .
Then the composite operator takes the form

P pc2 =

 I 0

P̂10 P11

[
I 0

P̂21 P22

]  .
For four grids, the operator takes the form

P pc3 =


I 0

P̂10 P11

 I 0

P̂21 P22

[
I 0

P̂32 P33

]
 .
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Continuing in this way to the coarsest grid that covers the whole domain, ΩL, we can
define the prolongation operator from the composite function space to the global finest
function space, and from this we define the composite operator Apc = (P pc )TA0P

p
c for

each processor [11]. In practice, we can use an FAC type solver [13], which means that
we would not need to explicitly form this operator, but our algorithm will behave as if
we have. Notice that this composite operator is the natural extension of what would
happen with a finite element discretization on the composite grid, and the grids can
actually be chosen such that it exactly corresponds to the finite element discretization.

3.4. AMG-DD. We can now define AMG-DD in terms of the composite oper-
ators and grids. An AMG-DD cycle (Algorithm 3.1) starts with a given global initial

guess, u
(0)
0 , and right-hand side, f0, partitioned among the processors. All proces-

sors then work in parallel to compute their pieces of the global residual and restrict
them to their associated pieces of coarser grids. These residuals are then efficiently
communicated at appropriate composite grids to other processors as outlined in the
next section. Then each processor solves its composite-grid problem using a multi-
grid algorithm based on the original AMG setup, or some other geometric multigrid
or AMG scheme based directly on composite-grid operator Ac. The parameter ρ in
Algorithm 3.1 specifies the number of local (communication-free) cycles that are done
before the solution is patched together and the next iteration is performed.

Algorithm 3.1 u = AMG-DDCycle(ρ, u0, f0) for solving A0u0 = f0

Form r0 = f0 −A0u0.
Restrict the residual to Ω1, . . . ,ΩL.
Communicate the restricted residuals to form rpc on each processor.
Execute in parallel on all processors p = 1, . . . , Np

Set upc = 0.
Do ρ cycles on Apcu

p
c = rpc .

Update u0 ← u0 +QpP
p
c u

p
c .

return u0.

3.5. Communicating the Residual in AMG-DD. While no inter-processor
communication is required in the AMG-DD composite-grid solves, the residual within
each subdomain must be transferred to all other processors, albeit generally at coarser
scales. The global residual, r = f−Au, can be calculated in parallel using the original
matrix and the pieces of the operator on each subdomain. Note that the residual
for each composite problem can then be calculated in serial merely by forming the
matrix-vector product rpc = (P pc )

T
r. As such, the step in Algorithm (3.1) that calls

for a residual communication is straightforward in serial. The implications of this
requirement in a parallel implementation are addressed in Section 6.

3.6. AMG-RD. AMG-RD is based on the same composite grids and operators
that are formed for AMG-DD. However, instead of patching together the solutions
after an iteration, AMG-RD adds together the individual global approximations in
each iteration. For the global summation of solutions to make sense, AMG-RD solves
residual problems of the form Apcu

p
c = (P pc )TQpr. This approach relies on the fact that

the solutions are smooth outside the region, and can therefore be easily represented
and approximated on the composite grid.
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Algorithm 3.2 u = AMG-RDCycle(ρ, u0, f0) for solving A0u0 = f0

Require: ρ : Number of on-processor cycles.
Require: u0 : Initial guess.
Require: f0 : Right-hand side.

Form r0 = f0 −A0u0.
Execute in parallel on all processors p = 1, . . . , Np

Set upc = 0.
Do ρ cycles on APc u

p
c = (P pc )TQpro.

Update u← u0 +
∑
p P

p
c u

p
c .

return u0.

4. Theory. This section establishes a two-level convergence theory for AMG-
DD and AMG-RD. We first show that the two methods are duals of each other in the
energy inner product. We then develop an abstract theory that establishes optimal
convergence under full regularity and approximation property assumptions on the
origin of the global fine-grid matrix equation, Au = f . In particular, we assume
that A is symmetric and positive definite, and that this matrix equation was created
by conforming finite element discretization of a two- or three-dimensional uniformly
elliptic operator on a region that is either a convex polygon or has smooth boundary.
Below, we assume further that the finite elements are chosen on the fine, composite,
and coarse levels in such a way that they satisfy the strong approximation property
and that ‖A‖ is bounded above in terms of the norm of the coarse-level matrix. These
assumptions, while much more general, hold for continuous piecewise linear or bilinear
elements on uniform grids that admit coarsening by a factor of 2.

In what follows, we use C to denote a generic constant, independent of the number
of processors and problem dimension, that may change meaning with each occurrence.
Recall that Qp is the matrix that zeros out the entries in f outside processor p’s
subdomain, Dp

0 , but leaves f inside Dp
0 unchanged. As before, we let Ωpc and Gpc

denote the respective composite grid and associated function space determined by
the global grids, Ωi, i = 0, 1, . . . , L. Also as before, we let P pc : Gpc → G0 denote the
interpolation operator from processor p’s composite grid to the fine grid, and write
Apc = (P pc )TAP pc . Then, one iteration of AMG-DD starting with a zero initial guess
is

u← ΣpQpP
p
c (Apc)

−1(P pc )T f.

The error propagation matrix for this method is

Md = I − ΣpQpP
p
c (Apc)

−1(P pc )TA. (4.1)

Similarly, one iteration of AMG-RD starting with a zero initial guess is

u← ΣpP
p
c (Apc)

−1(P pc )TQpf,

with the error propagation matrix

Mr = I − ΣpP
p
c (Apc)

−1(P pc )TQpA. (4.2)

Now, since the adjoint of any matrix B in the energy inner product < A·, · >
is A−1BTA, then it is easy to see by the Euclidean symmetry of P pc (Apc)

−1(P pc )T
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and Qp that Md and Mr are energy adjoints of each other. One take-home from this
result is that the range and domain decomposition approaches exhibit the same energy
convergence bounds. Another is that we could use one of these methods following the
other to create a symmetric iteration.

While it may be more natural to measure convergence of either error propagation
matrix in the energy norm, the Euclidean norm of Md may be simpler by virtue of
the orthogonality of its individual terms. To see this for Md as defined in (4.1), let
Sp = P pc (Apc)

−1(P pc )TA, the energy-orthogonal projection of fine-grid vectors onto the
range of P pc . Since the Qp sum to I, we have

‖Mdx‖2 =
∑
p

||Qp(I − Sp)x||2.

Our aim now is to show that ||Md|| is bounded uniformly above by a constant less
than 1.

The bottom line here is that we need to know how well composite-grid vectors
approximate fine-grid vectors in the corresponding subdomain. It can, of course,
provide no approximation at all to oscillatory vectors outside Dp

0 – vectors that are
energy orthogonal to the composite grid. The key here is the presence of Qp, which
means that we just need to know the local accuracy in Dp

0 , where there is no de-
refinement. To avoid estimates of the above sum from depending on the number of
processors, we need to localize the effect of x on these terms. Our convergence theorem
below shows that I − Sp has enough structure to allow us to write Qp(I − Sp)x in
terms of a component of x that is nonzero only on Dp

0 and some close neighborhood
about it.

To achieve this structure, we content ourselves with a two-grid result, but with
minimal padding in the sense that η0 = 1. We therefore now assume that each
composite grid, Ωpc , consists of Dp

0,1, the fine grid with uniform mesh spacing h on
Dp

0 and its nearest neighbors, and a 2h grid beyond that to the boundary, in what
we call the de-refinement region, D = Ω1 − Dp

1 . Note that the composite grid has
only coarse points in D. We begin with two assumptions that hold for our problem
setting. These assumptions are made with regard to a global coarsening of the fine
grid by a factor of 2. In particular, let P (without a subscript) denote the operator
that interpolates from the global coarse grid to the fine grid, and let P p1 denote the
operator that interpolates from the global coarse grid to p’s composite grid. Notice
that P p1 : G1 → Gpc , and A1 = (P p1 )TApcP

p
1 .

Assume now that the following strong approximation property (SAP)[14, 15] holds
from the global coarse level to both the global fine and the composite levels, respec-

tively: Letting T = I−P
(
PTAP

)−1
PTA and Tp = I−P p1

(
(P p1 )TApcP

p
1

)−1
(P p1 )TApc ,

then

||Tw|| ≤ C

||A||
||Aw|| , ∀w ∈ G0, (4.3)

and

||Tpw|| ≤
C

||Apc ||
||Apcw|| , ∀w ∈ Gpc . (4.4)

Assume also that

‖A‖ ≤ C‖Apc‖. (4.5)

9



Consider the doubly extended domain D̂p0 formed from Dp0 by extending it first to
include the coarse-grid neighbors in the composite grid that are nearest to it and
then to the next ring of composite-grid coarse-grid neighbors that are nearest the
first extension. Our final assumption is that the D̂p0 overlap each other by a fixed
amount. For example, for the two-dimensional discrete nine-point Laplacian and for
moderate-size processor domains and small enough padding, no point exists in more
than 9 doubly extended domains.

To establish convergence of AMG-DD, we incorporate a global relaxation step
into the process:

u← u− 1

‖A‖
(Au− f),

which has the error propagation matrix I − 1
‖A‖A. The algorithm then consists of

applying relaxation until it stalls and then using an AMG-DD correction step. We
prove in the following theorem that uniform convergence is obtained either by relax-
ation alone or by the AMG-DD correction step alone. That is, the overall method
converges independently of h and Np.

Theorem 4.1. (Two-Grid Convergence) AMG-DD converges uniformly in the
Euclidean norm in the sense that there exists an ε < 1, independent of h and Np,
such that either

||(I − 1

||A||
A)x|| ≤ ε||x||, ∀x ∈ G0

or

||Mdx|| ≤ ε||x||, ∀x ∈ G0.

Proof. If relaxation by itself satisfies the bound, then we are done. Otherwise,
we may assume that relaxation has stagnated in the sense that the Euclidean norm
of the error converges slowly:

||(I − 1

||A||
A)x|| ≥ ε||x||,

where ε ∈ (0, 1) is to be specified below. A little algebra then shows that x has a
relatively small Rayleigh quotient:

〈Ax, x〉
〈x, x〉

≤ (1− ε2)||A||. (4.6)

But then the “oscillatory” component, t = Tx = (I − P (PTAP )−1PTA)x, of x that
is energy orthogonal to R(P ) must be relatively small in the Euclidean sense because
the SAP in (4.3) implies that

||t||2 ≤ C

||A||2
< Ax,Ax >≤ C

||A||
< Ax, x >≤ C(1− ε2)||x||2. (4.7)

The strong sense of smoothness of the error expressed by (4.7) is the connection
between the Euclidean and energy vector spaces that we need. We now hshow that
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the composite-grid step effectively reduces such error. Specifically, our aim now is to
prove that there exists a constant c <∞ such that∑

p

||Qp(I − Sp)t||2 ≤ c||t||2, ∀t ∈ R⊥A(P ). (4.8)

We could then combine (4.7) and (4.8) to establish the convergence bound

‖Mdx‖2 =
∑
p

||Qp(I − Sp)x||2 =
∑
p

||Qp(I − Sp)t||2 ≤ cC(1− ε2)||x||2.

The last equality here follows because x differs from t by s ∈ R(P ) ⊂ R(P pc ), which
is in the null space of I − Sp. We could then complete the proof by choosing

ε =

√
cC

1 + cC
,

which, after a little algebra, reduces to the desired convergence bound.
We are now left with the sole task of establishing (4.8). To this end, note that a

little more algebra yields∑
p

||Qp(I − Sp)t||2 ≤ 2||t||2 + 2
∑
p

||QpSpt||2 .

Focusing on the last term of this inequality, for a given p, define rpc = (P pc )TAt. It
suffices now to establish that∣∣∣∣QpP pc (Apc)

−1rpc
∣∣∣∣ ≤ C

||Apc ||
||rpc ||. (4.9)

Since ||QpP pc || = 1, this would follow if we could prove that

||τp|| ≤
C

||Apc ||
||Apcτp|| , (4.10)

where τp = (Apc)
−1rpc . Since Tpτp = τp and P = P pc P

p
1 , then more algebra yet shows

that τp ∈ R(P p1 )⊥A
p
c , with superscript ⊥Ap

c
denoting Apc -orthogonal complement. But

(4.10) follows directly from the SAP, (4.4), so we have thus established (4.9).
P and P pc agree outside Dp0 , so PTAt = 0 implies that rpc is nonzero only on Dp0

and its nearest coarse-grid neighbors. Thus, ||(P pc )TAt|| only involves values of t on
D̂p0 . Let tploc denote t restricted to D̂p0 . We then use (4.9) to conclude that∣∣∣∣QpP pc (Apc)

−1(P pc )TAt
∣∣∣∣ ≤ C

||Apc ||
||A||||tploc||.

Finally, by the boundedness assumption, (4.5), on ||A||
||Ap

c || and the limited overlap as-

sumption on D̂p0 , we obtain∑
p

||QpP pc (Apc)
−1(P pc )TAt||2 ≤

∑
p

C

minp ||Apc ||2
||A||2||tploc||

2 ≤ C||t||2.

We have therefore established (4.8) and, thus, the proof.
Remark 4.1. Theorem 1 establishes uniform convergence of AMG-DD in the

Euclidean norm. A direct consequence of this result is uniform convergence of its
dual, AMG-RD, in the residual norm:

||Mr||A2 ≡ ||AMrA
−1|| = ||MT

d || ≤ ε < 1.
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5. AMG-DD/RD Numerics. While the previous section establishes theoret-
ical convergence properties of the method in a two-level setting, more nuanced ques-
tions need to be addressed in practice. With the AMG-DD/RD algorithms, a very
large parameter space must be explored if optimal choices are to be identified. The
parameters selected can have effects on the maximum possible size of the problem
due to the overlapping grids and on the time to solution as a function of computa-
tion/communications required. To obtain some insight into good practical ranges for
these parameters, numerical tests were performed based on a simple model problem
whose convergence properties are well understood in the context of AMG methods.
The results of these experiments are reported here. These results were then used to
determine reasonable choices for the parameters used to form the composite grids for
the model problem. We establish choices for the padding on each level that seem
reasonable in terms of their effect on convergence and complexity or, in other words,
on time to solution. We then attempt to determine how much computational work
should be expended on solving the composite grid subproblems before communication
is allowed between processors.

The numerical results described below were obtained from a sequential implemen-
tation of the parallel AMG and AMG-DD algorithms. For AMG, we use V (1, 1) cycles
(see Algorithm 2.1), hybrid Gauss-Seidel, and coarsening (i.e., inter-level transfer and
coarse-level operators) based on the classical Ruge-Stüben algorithm [5]. These par-
ticular AMG parameter choices were made because they are fairly common, but other
algorithmic choices would also lead to similar results and conclusions.

5.1. Size of Problem on a Processor. To model the computational cost of
the AMG-DD algorithm, we have to first calculate the number of unknowns needed
to form a composite problem. This is a function of the number of unknowns assigned
to a processor, |Dp0 |, and the padding on each grid, ηi. It is important to note that
AMG-DD requires more memory than AMG to solve the same problem, so AMG can
solve somewhat larger problems on any given machine, depending on the size of the
padding.

As described earlier, the pad amount is the amount of nearest neighbors that we
add to a problem on each grid. To develop a closed form for this, we start out with
the assumption that the processor owns a region of the original problem of size nd

in d dimensions, and we assume a constant padding of η and a constant coarsening
factor c ≥ 2. We can show recursively that the length of the side of Dk,η, k = 0, . . . , L,
satisfies

lk =
n

ck
+

k∑
i=0

2η + αk−i
ci

≈ n

ck
+

k∑
i=0

2η

ci
,

where each −1 < αk < 1 accounts for the fact that lk−1 may not be perfectly divisible
by c. The sizes of the Dk,η are then given by

|D0,η| = ld0 , |D1,η| = ld1 , . . . |DL−1,η| = ldL−1, |DL| = |ΩL|.

To get the total size of the composite grid, it is easier to first imagine that there are
only two grids, and then see that the size of the composite grid, |Ωc|, is the padded
fine region combined with the coarse grid outside of that region:

|Ωc| = |D0,η|+ |D1,η −D1| ≈ |D0,η|+ |D1,η| −
|D0,η|
cd

.
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Fig. 5.1: Left: Growth of the composite grid for n = 100 as a function of η. Right:
Effect of η on local problem size n under fixed memory constraints.

Now, using this same logic on all grids yields

|Ωc| = |D0,η|+ |D1,η −D1|+ · · ·+ |DL−1,η −DL−1|+ |ΩL −DL|

≈
(

1− 1

cd

)
ld0 +

(
1− 1

cd

)
ld1 + . . . .+

(
1− 1

cd

)
ldL−1 + |ΩL|

≈
(

1− 1

cd

) L−1∑
k=0

(
n

ck
+

k∑
i=0

2η

ci

)d
+ |ΩL|

≈
(

1− 1

cd

) L−1∑
k=0

(
n

ck
+ 2η

(
c

c− 1

))d
+ |ΩL|

= O
(
nd + nd−1η + · · ·+ nηd−1 + Lηd + |ΩL|

)
.

In particular, for the case of d = 2 dimensions and coarsening factor c = 2, we have

|Ωc| ≈ n2 + 12nη + 12Lη2 + |ΩL|.

Notice that the size of the composite grid depends on: n2, the size of the fine-grid
region assigned to a processor; Np, the number of processors on the machine (assuming
a fully coarsened hierarchy of grids so that L ≈ log(N) ≈ log(Np)); and η, the size
of the padding region. Considering this expression for n = 100 and several different
fixed numbers of processors, Figure 5.1 shows how |Ωc| scales with η and also how the
problem size n is affected under fixed memory constraints.

Notice that Figure 5.1 shows that keeping η small, especially on the order of
one or two, means that the size of the composite grid is essentially the same as
the size of the problem that would be assigned to a processor in a typical parallel
implementation. Changing the scale of the processors has very little effect on the
growth of the composite problem size, especially for small padding amounts.

5.2. Parameter Effects on Convergence. One issue that needs to be ad-
dressed is the ability of composite grids to approximate the solution on the fine-grid
processor subdomains. Since AMG-DD is intended as a replacement for a V-cycle, its
convergence factors are compared to that of a V-cycle for solving global problems of
the same size. These results are presented in the context of weak scaling, that is, the
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Fig. 5.2: Convergence and complexity (number of nonzeros in the composite-grid
matrix) as functions of uniform padding for varying numbers of processors: 9=red,
16 = blue, 25 = green, and 49=pink. The AMG plots in the complexity graph show
the number of unknowns in the global fine grid.

number of unknowns per processor is fixed and the number of processors is varied.
(We ignore memory constraints in these results; see earlier discussion and Figure 5.1.)

Figure 5.2 compares optimal convergence of the AMG-DD cycle, with η constant
for each grid, to a standard AMG V-cycle. To achieve this optimal convergence, we
solve each processor’s problem as well as we can before doing any communication. This
would of course only make sense if computation were actually “free”. In Figure 5.2,
we also show problem complexity (i.e., the number of nonzeros in the composite-grid
matrix) on each processor as the padding increases for the case of uniform padding,
which we present in relation to the number of unknowns in the global fine grid.

Figure 5.2 indicates that the composite problems can give good approximation
to the global solution and, as expected, increasing the overlap between the processors
enhances the convergence rate for the algorithm. However, convergence must be
understood in the context of the attendant complexity. The complexity graph shows
us that, for minimal padding, the size of the problem on each processor is almost
independent of the size of the global problem, which is directly proportional to the
number of processors. One question this leads to is how important it is to maintain
a high level of padding outside of the fine-grid region.

Figure 5.3 is the same test as Figure 5.2, but now only η0 is allowed to grow, while
ηk is fixed at 2 for all k > 0. Figure 5.3 shows that increasing the padding only on
the fine grid greatly reduces its effectiveness; however growth of the problem in this
setting is now directly tied just to the size of the fine grid patch on each processor,
and is nearly independent of the number of processors and the global problem size.

In Table 5.1, we present sample convergence factors for parameters that are com-
mensurate with the scaling models that we created for AMG-DD/AMG-RD. Each
processor was assigned 5000 points in the original fine grid, and tests were run with
various padding levels determined by η = 1, 2, 3, and 4 and various numbers of local
solves per cycle determined by ρ = 1, 2, 3, and 4.

One important take-away from these results is that they appear to be almost
independent of the number of processors that we selected. There is mild growth as
the number of processors increases, but it is similar to growth exhibited by AMG.
Convergence actually improves in some cases, but these fluxuations are quite small
and probably due to minor variations in the convergence rate of the AMG method
used to approximate the composite solves. Table 5.1 also indicates that, while it is
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Fig. 5.3: Convergence and complexity (number of nonzeros in the composite-grid
matrix) as functions of fine-grid padding (coarse-grid padding is fixed at 2) for varying
numbers of processors: 9=red, 16 = blue, 25 = green, and 49=pink. The AMG plots
in the complexity graph show the number of unknowns in the global fine grid.

NumProcessors = 9 NumProcessors = 16

ρ = 1 ρ = 2 ρ = 3 ρ = 4

η = 1 0.119 0.053 0.043 0.054
η = 2 0.105 0.037 0.031 0.031
η = 3 0.121 0.036 0.027 0.026
η = 4 0.098 0.037 0.023 0.028

ρ = 1 ρ = 2 ρ = 3 ρ = 4

η = 1 0.142 0.071 0.064 0.062
η = 2 0.139 0.058 0.050 0.041
η = 3 0.127 0.048 0.028 0.041
η = 4 0.123 0.043 0.027 0.030

NumProcessors = 25 NumProcessors = 36

ρ = 1 ρ = 2 ρ = 3 ρ = 4

η = 1 0.147 0.073 0.061 0.062
η = 2 0.119 0.053 0.038 0.039
η = 3 0.122 0.049 0.035 0.035
η = 4 0.111 0.037 0.027 0.027

ρ = 1 ρ = 2 ρ = 3 ρ = 4

η = 1 0.146 0.070 0.071 0.068
η = 2 0.156 0.061 0.058 0.045
η = 3 0.152 0.060 0.037 0.036
η = 4 0.128 0.044 0.031 0.039

Table 5.1: Convergence of AMG-DD for 9, 16, 25, and 36 processors with 5000 points
per processor for varying padding (η) and number of cycles (ρ).

beneficial to perform two cycles on each processor before the residual is calculated,
the benefit of any additional cycles is very mild. The table also suggests that any
padding past η = 2 does not generate significant increase in convergence of the overall
iteration. The results for AMG-RD are omitted since, as expected, they are nearly
identical to those for AMG-DD.

Based on the results from the model problem, it is clear to see that two lines
of grid-point padding on each level yields an effective process. Using such a small
padding means that the problem stays within an acceptable region in terms of the
amount of memory that must be wasted in order to support the composite grids. It
is also clear that, within this framework for the model problem, only two iterations
should be performed before communication is required. In all of the tests reported
here, the local solves converged with a consistent factor of about 0.1, so ρ really
reflects the number of decimal places of accuracy in the solution of the composite-grid
equations. This suggests that, for the model problem, two decimal places of accuracy
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is an appropriate target for the local composite-grid solves.

6. Parallel Issues. As we said above, to simplify the task of studying AMG-RD
and AMG-DD in a large parameter space, we restrict ourselves to weak scaling tests
in anticipation of relatively weak processor architectures. One goal of this study is to
envision modifications to AMG methods that may have better scaling characteristics
for future generations of computers. As the number of processors increases, the cost of
communication, especially on coarser levels, affects the weak-scaling characteristics of
these algorithms. Our investigation of these methods is in the context of the effects of
exascale computing on AMG algorithms, so strong-scaling is not studied here because
the sheer size of the resulting problems would preclude such models.

We should also note that, in practice, not all communications are equal, and
machines are tending to become hierarchical in nature. As the number of processors
dramatically expand, we must reach a point where the subdomain contains a tiny
fraction of the global problem, leaving the composite grid with extremely coarse grids
on the global domain. We can thus expect convergence of AMG-RD and AMG-DD
to stall at these extreme scales, unless we employ these methods in a hierarchical
way on subsets of processors (e. g., “nodes”) where communication may be relatively
inexpensive.

In a naive implementation, if the padding is allowed to grow, then communication
costs would have significant drawbacks in parallel. However, in the previous section,
the parameters that we identified fall into a regime where we can accumulate the
residual in a manner with little overhead. In fact, we introduce an algorithm here that
allows communication within a log(Np) communication pattern, but with a reduced
constant compared to a typical V-cycle.

6.1. Setup. Implementation of AMG-DD and AMG-RD can be done using only
the constructs (coarse grids, coarse-grid operators, and intergrid transfer operators) of
an existing AMG hierarchy. As in all AMG algorithms, the cost of this setup process
for AMG-DD and AMG-RD becomes an issue. In a purely serial setting, setup costs
for AMG-DD and AMG-RD can be up to about twice that of standard AMG due
to the redundant calculation that we use. However, in parallel, the increase in setup
costs over that of AMG itself can be reduced essentially to the cost of communicating
the necessary components of the operators to each processor. This is a result of the
fact that the construction of the setup is based on existing AMG constructs. This
added cost is therefore bounded by that of performing one extra V-Cycle because the
necessary communication process can be done using the same pattern as used in the
residual communication process, described next.

6.2. Residual Communication in Parallel. Since each processor only needs
the residual on its composite grid, communication can be minimized by starting the
residual updates on the coarsest grid, ΩL, and bubbling the information up as detailed
in Algorithm 6.1. The algorithm proceeds up through the hierarchy, exchanging data
with neighbors on each grid. For example, consider the one-dimensional illustration
in Figure 6.1. Every point in processor p’s composite grid can be labeled as being in
at least one of three sets: Dp0 ∩ Ωk; a set Ψ of distance-ηk neighbors (indicated by
squares in the figure); or the composite grid Ψc formed from Ψ ∩ Ωk+1, which is a
coarsening of some set Ψ. The algorithm sends Ψ and Ψc (which may be empty) to
neighboring processors. As presented, it communicates redundant information, but
this is easy to modify in practice to reduce costs. We now show that the algorithm
produces the desired residual update, and we show later in Section 7.2.1 that the total
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Algorithm 6.1 Collect residual for composite grids

for k = L→ 0 do
Execute in parallel on all processors (p = 1, 2, . . . , Np)
if (Dp0 ∩ Ωk) 6= ∅ then

Identify the set of neighboring processors {p1, . . . , pm} (not equal to p) that
contain points within distance ηk of (Dp0 ∩ Ωk).
for j = 1→ m do

Find all points x ∈ (Dp0 ∩ Ωk) such that dist(x, (Dpj0 ∩ Ωk)) ≤ ηk, let Ψ be
the union of these points.
FormΨc from Ψ ∩ Ωk+1 as outlined in Section 3.2.
Send the residual at all points and grids in Ψ,Ψc to pj .

end for
end if

end for

Fig. 6.1: One-dimensional example of a processor’s composite grid and the residual
update Algorithm 6.1. Processor p owns the points in the red vertical rectangle. Points
in the distance-ηk neighborhood of p are highlighted with squares and numbered 0
through 7. All other points are in the coarse composite grid of some distance-ηk
neighbor and are labeled accordingly. Example sets Ψ and Ψc are also given.

amount of data communicated by each processor is on the same order as the number
of points on its boundary plus a log factor.

Claim: On grid Ωk, processor p owns region Dp0 ∩ Ωk . After the algorithm has
executed for this grid, processor p will have the correct residual for all points, denoted
Ωpc,k, on a composite grid built from Dp0 ∩ Ωk.

Proof. The needed information is assumed to be stored off processor; otherwise,
the claim is trivially true.

• Suppose k = L (the coarsest grid). Then, since p communicates directly to
all processors within ηL, it trivially has the correct residual for all x ∈ Ωpc,L.

• Suppose k = m, and assume that each processor has obtained residual infor-
mation at all points on Ωpc,m+1, the composite grid formed from Dp0 ∩ Ωm+1.
By construction, if x ∈ Ωpc,m, then there exists y ∈ Dp0 ∩ Ωm and a path of
the form

y → ym,η ↓ y(m+1) → y(m+1),η ↓ y(m+2) → · · · → x.

17



Notice, for some processor q, that y(m+1) ∈ Dq0 ∩ Ωm+1 and x ∈ Ωqc,m+1.
Hence, processor q has residual information for point x by assumption and,
since y(m+1) is within distance ηm, then processor q passes that information
to processor p.

The claim thus holds.

This claim shows that, after the kth grid has been updated, each processor has
the composite grid defined by the region it owns for that grid. Therefore, after all
grids have been updated, each processor obtains the residual information it needs for
its composite grid. The cost of this algorithm is detailed in Section 7.2.

7. Parallel Numerics. Ideally, to judge the scaling characteristics of this algo-
rithm, we would present results based on tests run on different architectures. How-
ever, no fully parallel implementation of this algorithm has yet been developed, so we
instead rely on models that give us indications of how we expect AMG and AMG-
DD/AMG-RD to scale. Much of the analysis of the scalability of a parallel implemen-
tation of AMG is based on the work by Gahvari et al. [16]. Throughout this section,
three main parameters are utilized:

1. α: The cost of latency on the machine per message. For now, we assume that
this is a constant that does not depend on the distance of connections.

2. β: Inverse bandwidth cost or, more generically, the cost per amount of data
sent.

3. γ: The flop rate of the machine, that is, the amount of work per computation.

Based on data in Table 2 from [16], we make the assumption that α, β, γ have the
following relations for the models:

α = 104γ β = 10γ .

We also assume, as before, that we are solving a nine-point discretization of a Lapla-
cian in two dimensions, which allows us to predict stencil patterns in a full coarsening
scenario. Also note that the models just describe the cost of V-cycles; setup modeling
is omitted at this time.

7.1. AMG V-Cycle Cost. One standard process for modeling a parallel al-
gorithm is to analyze the cost on the most expensive processor, so we follow this
structure. In its most basic form, the model of one AMG V-Cycle can be written as

Tamg = Tlatency + Tcomm + Tcomp.

The communication terms can be modeled as

Tlatency + Tcomm =

L∑
i=0

(αmi + βqi) ,

where L+ 1 is the number of grids in the system (note that L ≈ log(N), with N the
number of unknowns in the system), mi is the number of messages sent on level i,
and qi is the amount of data sent on level i. To calculate these numbers, we model
the V (1, 1)-Cycle (Algorithm 2.1). To actually specify the parameters mi, qi, we need
to understand the structure of the operators in the multigrid hierarchy. For this
analysis, we assume standard geometric full coarsening by a factor of 2, so complexity
and operators are identical on all grids.
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7.1.1. Communication costs per AMG V-Cycle. For calculating the pa-
rameters, let Γi denote the number of unknowns on the boundary of the processor
of interest on grid i. Since we are modeling the amount of information required to
advance computation, then, to be precise, if the number of points on a side for a pro-
cessor is r, the amount of information that needs to be gathered is 4r + 4. However,
the effect of the four corner points is negligible, so we assume that, given ni points
on a side on grid i, we have

Γi = 4ni.

This also leads to the convenient relation Γi = Γ0

2i . Parameters mi, qi can now be split
into their components for relaxation, residual calculation, restriction, interpolation,
and coarse-grid solve.

First, we assemble the latencies:

mi =

{
2mi,relax +mi,residual +mi,restrict +mi,interp i < L

2mL,solve i = L.

For the case we are investigating, we have mi = 2 · 8 + 8 + 8 + 8 if i < L and 2 · 8 if
i = L. The latency cost can then be represented as

Tlatency = α

(
L−1∑
i=0

40 + 2 · 8

)
= α(40L+ 16).

The amount of data sent is

qi =

{
2qi,relax + qi,residual + qi,restrict + qi,interp i < L

2 · qL,solve i = L,

which, for this case, is

qi =

{
2Γi + Γi + Γi

2 + Γi

2 i < L

2ΓL i = L.

The inverse bandwidth cost can be modeled as

Tcomm = β

(
L−1∑
i=0

4Γi + 2ΓL

)
= β

(
L−1∑
i=0

4
Γ0

2i
+ 2

Γ0

2L

)
' 8βΓ0.

7.1.2. Computation Costs per AMG V-Cycle. Assuming that there are
W0 = n2 points on the finest grid, then the number of points, Wi, on the i-th grid is

Wi =
W0

22i
.

Computation cost is then based on the amount of work done on each grid. So, for
each grid, we can model the work in terms of the number of unknowns on individual
grids:

• Relaxation (Gauss-Seidel) : 18 operations
• Restriction (Ideal) : 18

4 operations
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Fig. 7.1: AMG V-Cycle costs for W0 = 25, 000 and 100, 000, respectively.

• Interpolation (Ideal) :18
4 operations

• Residual calculation: 18 operations
• Coarse-grid solve : 2 relaxations = 36 operations.

This translates to per-grid costs of

N i
relax = 18Wi, N i

restrict = 18
4 Wi, N i

interp = 18
4 Wi,

N i
residual = 18Wi, N i

solve = 36WL.

So the total computational cost is

Tcomp = γ

(
L−1∑
i=0

2N i
relax +

L−1∑
i=0

N i
residual +

L−1∑
i=0

N i
restrict +

L−1∑
i=0

N i
interp +Nsolve

)

= γW0

[
63

(
1− (1/4)L

1− (1/4)

)
+

36

22L

]
' 84γW0.

7.1.3. Graphs for AMG Costs. For the purpose of modeling, we scale by
setting γ = 1. For a problem with Np processors and n2 unknowns per processor,
then L = dlog4(Np · n2)e, W0 = n2, and Γ0 = 4n. Using the derived functions for the
AMG costs, the models for a V (1, 1)-Cycle for Np = 2i, i = 1, . . . , 20, while holding
the number of unknowns per processor constant yields Figure 7.1. Notice that this
figure shows that the only term that grows significantly as the number of processors
increases is latency.

7.2. AMG-DD Cycle Cost. As in the derivation of costs for AMG, we again
break the problem down into three parts:

Tamgdd = Tlatency + Tcomm + Tcomp.

First, we have to be specific about the form of the algorithm that we are modeling.
The assumption here is that there already has been an AMG setup, and the parts
of the matrix needed to solve the composite problems have already been distributed.
Therefore, we restrict ourselves to modeling the solve cycles of AMG-DD from Algo-
rithm 3.1.
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7.2.1. Communication Costs per AMG-DD Cycle. There are three main
points of communication with the AMG-DD cycle: residual calculation; residual re-
striction; and communication of the composite residuals. Residual calculation and
restriction, respectively, cost

mresidual = 8, qresidual = Γ0

mrestriction = 8L, qrestriction = Γ0

2

(
1−(1/2)L

1−1/2

)
.

For the communication of the residual, we model the algorithm developed for AMG-
DD (Algorithm 6.1). To simplify the model so that the number of neighboring proces-
sors is fixed on all grid levels, we assume that η is appropriately reduced to a smaller
value on coarse grids. This is likely the best way to design the algorithm for parallel
computation anyway. We do not, however, account for this reduction in the commu-
nication term, hence the model considered here is slightly more pessimistic than it
should be for this latency-friendly case. Since nearest-neighbor communication is all
that is required on each grid, then the latency cost is just

mres.comm =

L∑
i=0

8 = 8(L+ 1).

To bound the amount of data sent in Algorithm 6.1, we can use the result derived
in Section 5.1 for the size of the composite grid. Given a fixed side length, n, on a
processor and a fixed padding, η, on each grid, then the amount of data communicated
is proportional to

|Ωc| − n2 ≈ n2 + 12nη + 12Lη2 + |ΩL| − n2.

Hence, if |ΩL| is small, we can take

qres.comm = 12nη + 12Lη2.

Notice that the total amount of data that must be communicated in the residual
communication routine is on the order of the size of the boundary on a processor plus
a log factor.

The communication costs are then

Tlatency = α(8 + 8L+ 8(L+ 1)) = 16α(L+ 1)

and

Tcomm = β

(
Γ0 +

Γ0

2

(
1− (1/2)L

1− 1/2

)
+ 12nη + 12Lη2

)
' β

(
2Γ0 + 12nη + 12Lη2

)
.

7.2.2. Computation Costs per AMG-DD Cycle. Using the work from the
AMG derivations and the assumption thatW0 is the size of the fine grid on a processor,
we know that the residual computation costs

Nresidual.comp = 19W0.
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Fig. 7.2: AMG-DD costs for W0 = 25, 000 and 100, 000, with η = 2 and ρ = 1.

Restriction requires 18 operations, and must be done for each grid, so

Nrestrict.comp =

L∑
i=1

18
W0

22i
= 18W0

(
1− (1/4)L

1− (1/4)

)
' 36W0.

Finally, solving the composite problems can be estimated in the same fashion as for
an AMG V-cycle, except that we now replace W0 with the calculated size of the
composite grid, |Ωc|, and then add the parameter ρ that represents the number of
cycles done between calculations:

Namgdd.comp = ρ|Ωc|
[
63

(
1− (1/4)L

1− (1/4)

)
+

36

22L

]
,

where ρ is on the order of two to three. This yields a total computation cost of

Tcomp = γ

(
19W0 + 18W0

(
1− (1/4)L

1− (1/4)

)
+ ρ|Ωc|

[
63

(
1− (1/4)L

1− (1/4)

)
+

36

22L

])
' γ (43W0 + ρ84|Ωc|) .

7.2.3. Graphs for AMG-DD. Using these derivations, we present scaling
models in Figures 7.2 and 7.3 for AMG-DD cycles for a select sample of parame-
ters. First, we fix the padding at η = 2 and the number of points per processor at
W0 = 25, 000 and 100, 000, and then present the models for ρ = 1. Second, we model
the scaling characteristics for larger padding, η = 20, fixing ρ = 2, for processor sizes
W0 = 25, 000 and 100, 000. The effect of doing more, or less, computation (chang-
ing ρ) merely shifts the scale of computation up. For any ρ > 2, cost savings from
reducing communication are lost by the increased time in computation.

Figures 7.2 and 7.3 show that, as desired, the AMG-DD algorithm achieves the
goal of reducing communication for computation. While latency and communication
both increase as the number of processors increases, the computation cost is now what
drives the overall time per iteration of the algorithm. The amount of computation
that has been added to each processor, as shown in Section 7.2.2, is on the same order
of magnitude as the standard approach, so these figures also serve to highlight the
balance between computation and communication that already exists in traditional
AMG implementations.

22



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

log
10

(N
P
)

lo
g 10

(T
)

W
0
 = 25,000

 

 

T
AMG−DD

T
latency

T
comm

T
comp

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

log
10

(N
P
)

lo
g 10

(T
)

W
0
 = 100,000

 

 

T
AMG−DD

T
latency

T
comm

T
comp

Fig. 7.3: AMG-DD costs for W0 = 25, 000 and 100, 000, with η = 20 and ρ = 2

.

8. Conclusion. Two new algebraic solvers, AMG-RD and AMG-DD, were devel-
oped and analyzed here that aim to trade communication for computation by forming
global composite “grids” based only on the matrix, not the geometry. This trade-off is
achieved efficiently by way of global composite grids on each processor that enable full
subdomain overlap, but primarily at very coarse scales of resolution. One advantage
of this approach is that it allows for the construction of composite problems with no
prior knowledge of the original grid structure, but forms them algebraically, based
only on components of an existing AMG setup. An important development of this
methodology is a novel residual communication process that enables effective parallel
computation on composite grids, avoiding the all-to-all communication costs of the
geometric methods. The main purpose of this paper was to study the potential of
these two algebraic methods as possible alternatives to existing AMG approaches for
future parallel machines. To this end, we developed some theoretical properties of
these methods and reported on serial numerical tests of their convergence properties
over a spectrum of problem parameters. We also included a parameter study based
on a performance model designed to anticipate their potential for use in emerging
parallel architectures.

Our cost models show that these methods compete as algebraic solvers with cur-
rent AMG algorithms on modern large-scale computers, but may surpass them in a sig-
nificant way only if and when future architectures come with increased communication-
to-computation cost ratios. This is, however, less of a limitation of the AMG-DD and
AMG-RD algorithms than a testament to the scaling efficiency of current parallel
AMG methods, and future research on improvements in the use of composite grids
may tip the balance in favor of these new approaches.

An important aspect of AMG-DD and AMG-RD that we have not yet explored
is the potential for use in a nested iteration (or full multigrid) process: While these
methods seem comparable to AMG solvers in terms of algebraic convergence factors,
they may prove to be very effective when used to reduce the error to discretization-
error levels. Specifically, if we apply a nested iteration approach to the composite grid
subproblems (which requires no communication between processors), it may well be
that the resulting error will be acceptable in the sense that it is comparable to the error
in the discrete solution itself–relative to the solution of the underlying PDE (assuming
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here that there is one). These methods may thus be able to deliver acceptable results
with only one communication phase. This capability could substantially reduce the
communication costs that currently inhibit the use of full multigrid algorithms in
large-scale parallel applications. Future work will therefore focus on the study of
these methods in a nested iteration context.
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